Infrared and Raman Spectra of Bis(imidotetraphenyldithiodiphosphino-S,S') Complexes with Cu(II), Co(II) and Fe(II)

R. CZERNUSZEWICZ, E. MASLOWSKY, Jr., and K. NAKAMOTO

Department of Chemistry, Marquette University, Milwaukee, Wis., U.S.A. and Department of Chemistry, Loras College, Dubuque, Iowa, U.S.A.

Received October 18, 1979

The infrared and Raman spectra of KL, FeL₂, CoL₂ and CuL₂ (L = imidotetraphenyldithiodiphosphino anion) have been obtained in the range from 1600–200 cm⁻¹. To assign the chelate ring vibrations of CuL₂, resonance Raman spectra have been measured as a function of the exciting frequency. The CuS stretching vibration (F₂) of the tetrahedral CuS₄ core has been located at 292–283 cm⁻¹ based on the ⁶³Cu-⁶⁵Cu isotope shift observed in the far-infrared spectra. The totally symmetric CuS stretching vibration (A₁) appears strongly at 206 cm⁻¹ in the Raman spectrum. These results have been utilized to assign the spectra of the remaining compounds.

Introduction

Recently, resonance Raman(RR) spectra of blue copper proteins have been studied extensively [1-4]. These investigations have shown that their Cu-S stretching vibrations at ca. 280-260 cm⁻¹ are unexpectedly weak even when the exciting laser frequency is tuned in the Cu-S charge-transfer(CT) band near 600 nm. This anomaly was attributed to the small $\sigma(S)$ - $d\sigma(Cu)$ overlap by Siiman et al. [2] and to the indirect resonance enhancement by a UV transition by Ferris et al. [3]. In order to further confirm these vibrational assignments, we have studied the infrared (IR) and Raman (or RR) spectra of bis-(imidotetraphenyldithiodiphosphino-S,S') copper(II) and its Co(II) and Fe(II) analogs [5].

All these compounds are known to have the tetrahedral MS_4 core. For this reason, the CuS_4 skeleton of CuL_2 is regarded as a model of the metal binding site of blue copper proteins [5].

Experimental

Preparation of Compounds

The compounds, KL, FeL₂, CoL₂ and CuL₂ were prepared according to the literature methods [5-8]. ⁶³CuL₂ and ⁶⁵CuL₂ were prepared from ⁶³CuO and ⁶⁵CuO, respectively, which were purchased from Oak Ridge National Laboratory. The purity of these isotopes was over 98% for ⁶³Cu and over 90% for ⁶⁵Cu.

Spectral Measurements

The infrared spectra of all the compounds were measured as Nujol mulls ($450-200 \text{ cm}^{-1}$) and KBr pellets (1700-350 cm⁻¹) on a Beckman IR-12 infrared spectrophotometer. The far-infrared spectra of ${}^{63}CuL_2$ and ${}^{65}CuL_2$ were measured as Nujol mulls on a Nicolet FTIR-7199 spectrometer. The Raman spectra of KL, FeL₂ and CoL₂ were measured as KBr pellets with the 488.0 nm excitation (laser power, \sim 150 mw) using the rotating sample technique. The resonance Raman spectra of CuL₂ were measured at low temperatures (~ 20 K) by attaching the KBr pellet on a cold tip cooled by a Cryogenic Technology Model 21 cryocooler. All Raman spectra were recorded on a Spex Model 1401 double monochromator. Detection was made with a cooled RCA C31034A photomultiplier tube in the DC amplification mode. Excitations at 457.9, 488.0 and 514.5 were made by a Spectra-Physics Model 164 Ar-ion laser, and those at 578.2 and 618.2 nm were made by a Spectra-Physics Model 365 dye-laser (Rhodamine 6G) pumped by the above Ar-ion laser.

Results and Discussion

Figure 1 shows the IR spectra of KL, FeL_2 , CoL_2 and CuL_2 in the 1600–400 cm⁻¹ region. Previously, Schmidpeter and Groeger [6] reported the IR spectrum and band assignments of KL. However, no IR or Raman spectal data were available for its metal complexes. In this work we have obtained the IR and KŁ.

F

C.

1600

TRANSMITTANCE

100

Fig. 1. Infrared spectra of KL, FeL₂, CoL₂ and CuL₂ in the $1600-400 \text{ cm}^{-1}$ region.

1000

800

600

1200

Fre

Fig. 2. Raman spectra of KL, FeL₂ and CoL₂ in the 1700–200 cm⁻¹ region (excitation, 488.0 nm; power, ~150 mw; resolution, 1 cm⁻¹).

Raman spectra of all these compounds (Figs. 2-4). According to the theory of resonance scattering [9], the intensities of the chelate ring vibrations should be enhanced when the exciting laser frequency approaches that of the metal-chelate ring (L) charge-

Fig. 3. Resonance Raman spectra of CuL_2 at various exciting wavelengths. The asterisks indicate the 1002 cm⁻¹ line of the phenyl vibration (internal standard).

Fig. 4. Far-infrared spectra of KL, FeL₂, CoL₂ and CuL₂ in the 450 to 200 cm⁻¹ region.

transfer(CT) transition. In the case of CuL_2 , such a transition is known to be at 575 nm [5]. Thus the intensities of all the vibrations involving the PN, PS and CuS bonds are expected to be maximized as the energy of the exciting laser beam is matched to that of the Cu-L CT transition. As stated before, the MS vibrations are of our particular interest. To locate CuS stretching vibrations, we have prepared $^{63}CuL_2$ and $^{65}CuL_2$, and measured their isotope shifts in the far-IR region.

TIDDD I. TOTALIONALI TOGACHELOS (CHI) ANA DANA TISSILIMON	TABLE I.	Vibrational	Frequencies (cm ⁻	 and Band 	Assignment
--	----------	-------------	------------------------------	------------------------------	------------

K ⁺ L ⁻		FeL ₂		CoL ₂	CuL ₂		Assignment	
IR	Raman	IR	Raman	IR	Raman	IR	Raman	
1199vs 1187sh	1180w	1221vs, br	1193w, sh		1218vw 1194sh	1217s, br	1220vw, sh	v _p (PNP)***
1173s	1172n, sh	1178s	1186w	1176s	1184w	1178s	1178vw	- <u>4</u> ()
808s	815vw	808sh	800w	810w, sh	808vw	-	818vs*	v _s (PNP)
715s 703vs 696s	717vw 705w 698vw	716s 702s 698sh	718w, sh 708vw 697w, sh	715s 703vw 694s	719vw 706 w 696vw, sh	715s 703s 692vs	720vw, sh 708w 694w, sh	ν(PC)
586s	588vs	582m	574vs	580m	576vs	593m	580s*	v _s (PS)
608s	610vw	563s	562w	566s	565vw	572s 553s	-	v _a (PS)
528m	529m	529w, sh	521w	523w, sh	522w	528w, sh	530ms*	δ(PNP)
426w	428w	419w	421 w	421w	422w	423m	427m*	δ(NPS)
-	_	297w, sh	298vw	300w, sh	303w, sh	301sh	297w, sh	
_	-	280m	283w	292m 288m	292w	292w (1.5)** 283w (1.5)**	284*	v (MS), F ₂
267w	273w	-	276 w	275w, sh	276w	_	277w, sh	
259w, sh	258w, sh	255w	256 w, sh	256w	256w, sh	258w	268w	
243 w 227w, sh 215w	240ms 223m 217ms	242w, sh 233w, sh 216w	244ms 231w 217m	246 w, sh 234 w, sh 215 w	244ms 232w 216w	247w, sh 230	245vw, sh 228w, sh 215w, sh	. ***
-	-	-	205ms	_	207ms		206*	v (MS), A ₁
_	154ms 147m	-	-		-			

 ν , stretching; δ , bending; vs, very strong; s, strong; ms, moderately strong; m, medium; w, weak; vw, very weak; sh, shoulder; br, broad. *Strongly enhanced by resonance. **Isotope shift due to the 63 Cu- 65 Cu substitution. ***Phenyl vibrations may be hidden or overlapped.

Table I lists the IR and Raman frequencies and band assignments for KL, FeL_2 , CoL_2 and CuL_2 . Most of the phenyl vibrations were identified based on the well-known group frequencies of monosubstituted benzenes [10], and deleted from Table I for the sake of simplicity. However, some phenyl vibrations may be overlapped by other modes, as indicated in the table.

The P⁻⁻N⁻⁻P stretching frequencies are known to be 1210-1190 cm⁻¹ for cyclic $[NP(C_6H_5)_2]_{3,4}$ [11]. Since the PN bond orders of the present compounds are similar to the above compounds, we have assigned the strong IR bands near 1200 cm⁻¹ to v_a (PNP). The location of the corresponding symmetric mode, v_s (PNP), is not clear in the Raman spectra of KL, FeL₂ and CoL₂ shown in Fig. 2. However, Fig. 3 shows that the 818 cm⁻¹ band of CuL₂ is strongly enhanced when the exciting laser wavelength is close to 575 nm where the Cu-L CT band is located [5]. Thus, this band of CuL₂ and similar weak bands near 800 cm⁻¹ of other complexes have been assigned to v_s (PNP). The P-C stretching frequencies are in the range from 780-620 cm⁻¹ [12]. Thus, the three IR bands at *ca.* 700 cm⁻¹ of all the compounds have been assigned to the $\nu(PC)$ of various symmetry types. The corresponding Raman bands are generally weak (Fig. 2). Even in the case of CuL₂, these modes are not resonance-enhanced since the P-C bonds do not belong to the metal-chelate ring system (Fig. 3).

The P⁻⁻⁻⁻S stretching vibrations of metal diphenyldithiophosphinato complexes are reported to be in the range of 590-530 cm⁻¹ [13, 14]. As is seen in Fig. 3, CuL₂ exhibits a band at 580 cm⁻¹ which is strongly enhanced by the 578.2 excitation. This band has been assigned to v_s (PS). Two strong IR bands at 572 and 553 cm⁻¹ of CuL₂ are close to the 580 cm⁻¹ Raman band and assigned to v_a (PS).

In addition to the 818 cm⁻¹ band, CuL₂ exhibits several bands which are strongly enhanced when the exciting frequency approaches the energy of the Cu-L CT transition. They are at 530, 427, 284 and 206 cm⁻¹. The most likely assignments for the first two bands are the PNP and NPS bending modes, respectively. This is based on the assumption that the XYZ angle bending frequency is roughly given by the equation: $1/4 [\nu(X-Y) + \nu(Y-Z)] [15]$. Then, δ (PNP) and δ (NPS) are estimated to be about 500 and 450 cm⁻¹, respectively.

Figure 4 shows the far-IR spectra of the four compounds in the 450–200 cm⁻¹ region where the MS stretching vibrations are expected. We have found that the 292 and 283 cm⁻¹ bands of CuL₂ are shifted by *ca.* 1.5 cm⁻¹ by the ⁶³Cu⁻⁶⁵Cu substitution. These bands can be assigned to the Cu-S stretching band (F₂) of the tetrahedral CuS₄ core which is probably split by the solid state effect. Similar bands are observed for CoL₂ at 292 and 288 cm⁻¹, and for FeL₂ at 280 cm⁻¹. As expected, KL itself does not exhibit such bands.

As seen in Fig. 3, CuL_2 exhibits a strong band at 206 cm⁻¹ when excited by the 457.9 and 514.5 nm lines. Unfortunately, we were unable to observe this band by the 578.2 nm excitation because of the broad and steep background by the Rayleigh line. We assign this band to the A₁ type CuS₄ stretching mode since it is extremely strong even at off-resonance. The frequency of 206 cm⁻¹ is lower than those reported previously for blue copper proteins (300-250 cm⁻¹) [1-4]. However, this may be attributed to the differences in structure (tetrahedral CuS₄ core *vs.* pseudo tetrahedral CuN₂SX or trigonal bipyramidal CuN₄S core (X = N, S or O)) [4] and/or in the M-S bond order (ionized *vs.* neutral sulfur).

Acknowledgment

This work was partly supported by an ACS-PRF grant. The authors wish to express their sincere

thanks to Professor D. F. Shriver and Mr. B. Papke who kindly measured the far-infrared spectra of our compounds on a Nicolet FTIR-7199 spectrometer at Northwestern University.

References

- 1 V. Miskowski, S. P. W. Tang, T. G. Spiro, E. Shapiro and T. H. Moss, *Biochem.*, 14, 1244 (1975).
- 2 O. Siiman, N. M. Young and P. R. Carey, J. Am. Chem. Soc., 98, 744 (1976).
- 3 N. S. Ferris, W. H. Woodruff, D. B. Rorabacher, T. E. Jones and L. A. Ochrymowycz, J. Am. Chem. Soc., 100, 5939 (1978).
- 4 J. S. Thompson, T. J. Marks and J. A. Ibers, J. Am. Chem. Soc., 101, 4180 (1979).
- 5 R. D. Bereman, F. T. Wang, J. Najdzionek and D. M. Braitsch, J. Am. Chem. Soc., 98, 7266 (1976).
- 6 A. Schmidpeter and H. Groeger, Z. Anorg. Allgem. Chem., 345, 106 (1966).
- 7 M. R. Churchill and J. Wormald, Inorg. Chem., 10, 1778 (1971).
- 8 A. Davison and E. S. Switkes, *Inorg. Chem.*, 10, 837 (1971).
- 9 For example, see D. P. Strommen and K. Nakamoto, J. Chem. Educ., 54, 474 (1977).
- 10 F. R. Dollish, W. G. Fateley and F. F. Bentley, 'Characteristic Raman Frequencies of Organic Compounds', Wiley, New York (1974) p. 170.
- 11 L. C. Thomas, 'The Identification of Functional Groups in Organophosphorus Compounds', Academic Press, New York (1974) p. 62.
- 12 D. E. C. Corbridge, 'The Infrared Spectra of Organophosphorus Compounds' in 'Topics in Phosphorus Chemistry', Vol. 6, Wiley, New York (1969).
- 13 S. Sunder, L. Hanlan and H. J. Bernstein, Inorg. Chem., 14, 2012 (1975).
- 14 R. G. Cavell, W. Byers and E. D. Day, Inorg. Chem., 10, 2710 (1971).
- 15 For example, see K. Nakamoto, 'Infrared and Raman Spectra of Inorganic and Coordination Compounds', 3rd ed., Wiley, New York (1978).